Description
Tesamorelin & Ipamorelin Peptide Blend
The Tesamorelin and Ipamorelin blend consists of two peptides that appear to share the potential to stimulate the growth hormone axis, albeit through supposedly distinct mechanisms. This combination may synergistically activate the pituitary gland, which appears to result in the release of endogenous growth hormone. The blend seems to offer a potential means to optimize growth hormone levels and may elicit effects on sleep, metabolic function, cognition, and lipid profiles.(1) (2)
Scientific research indicates that the combination of Tesamorelin and Ipamorelin may yield a range of impacts, which may include improved deep sleep, reduced levels of triglycerides, visceral adipose tissue (VAT), and carotid intima-media thickness (cIMT), enhanced cognition, and possible overall optimization of metabolic function. This blend appears to present an opportunity to harness the synergistic actions of both to potentially augment natural growth hormone levels.
Chemical Makeup(3) (4)
Molecular Formula
- Tesamorelin: C221H366N72O67S
- Ipamorelin: C38H49N9O5
Molecular Weight
- Tesamorelin: 5136 g/mol
- Ipamorelin: 711.9 g/mol
Sequence
- Tesamorelin: Unk-Tyr-Ala-Asp-Ala-Ile-Phe-Thr-Asn-Ser-Tyr-Arg-Lys-Val-Leu-Gly-Gln-Leu-Ser-Ala-Arg-Lys-Leu-Leu-Gln-Asp-Ile-Met-Ser-Arg-Gln-Gln-Gly-Glu-Ser-Asn-Gln-Glu-Arg-Gly-Ala-Arg-Ala-Arg-Leu-NH2
- Ipamorelin: H-Aib-His-D-2Nal-D-Phe-Lys-NH2
Other Known Titles
- Tesamorelin: (3E)-hex-3-enoylsomatoliberin
- Ipamorelin: Ipamorelin Acetate, Aib-His-D-2-Nal-D-Phe-Lys-NH2
Tesamorelin & Ipamorelin Research and Clinical Studies
Tesamorelin & Ipamorelin Blend and Growth Hormone Deficiency
The Tesamorelin and Ipamorelin blend appears to exert its potential through distinct yet complementary proposed mechanisms of action. Tesamorelin, a growth hormone-releasing hormone (GHRH) analog, appears to act by binding to and activating the GHRH receptor on somatotrophs in the pituitary gland. This stimulation potentially triggers the synthesis and secretion of endogenous growth hormone (GH) in a pulsatile manner. By promoting GH release, Tesamorelin may possibly enhance lipolysis, reduce visceral adipose tissue, and also potentially improve glucose metabolism.
Ipamorelin, a growth hormone secretagogue receptor (GHSR) agonist, by contrast, appears to activate GHSR in the hypothalamus and peripheral tissues, potentially leading to the release of GH. This peptide appears to exhibit a high selectivity for GHSR, potentially without interfering with other hormones. This GHSR activation by Ipamorelin may result in increased GH secretion, which, in turn, might promote protein synthesis, lipolysis, and insulin-like growth factor-1 (IGF-1) production, as suggested by researchers.
When combined, the Tesamorelin and Ipamorelin blend may provide a synergistic impact by targeting different components of the growth hormone axis. Tesamorelin has been suggested to enhance GHRH-mediated GH release, while Ipamorelin has been suggested to directly stimulate GHSR to increase GH secretion. This dual action appears to amplify the overall GH, such as improved body composition, lipid profile, insulin sensitivity, and overall metabolic function in laboratory test models. By seemingly targeting the growth hormone axis through their supposed distinct mechanisms of action, Tesamorelin and Ipamorelin may collectively stimulate the pituitary gland, thereby potentially enhancing the release of endogenous growth hormone.(5)
Tesamorelin & Ipamorelin Blend and the Pituitary Gland
The Tesamorelin and Ipamorelin blend appears to exhibit some impact on the pituitary gland, a critical endocrine organ considered responsible for the regulation of growth hormone secretion.
Studies suggest that Tesamorelin may specifically target the growth hormone-releasing hormone receptor (GHRHR), potentially activating the signaling cascade that leads to growth hormone synthesis and subsequent release. As per the researchers, “Tesamorelin is a synthetic growth hormone-releasing hormone that acts on the anterior pituitary gland to stimulate the endogenous growth hormone secretion.”(6)
Ipamorelin, on the other hand, studies suggest may act as a potent agonist for the growth hormone secretagogue receptor (GHSR), seemingly promoting growth hormone secretion.(7) As stated in the studies, “Ipamorelin is the first GHRP-receptor agonist with a selectivity for GH release similar to that displayed by GHRH. The specificity of ipamorelin makes this compound a very interesting candidate for future clinical development.”(7)
When combined, these peptides appear to exert a synergistic action on the pituitary gland, which might result in enhanced growth hormone production. This proposed synergistic interaction between Tesamorelin and Ipamorelin may offer a promising avenue for research in optimizing growth hormone levels.
Tesamorelin & Ipamorelin Blend and Lipodystrophy
Research studies frequently indicate that lipodystrophy is often accompanied by insulin resistance, dyslipidemia, and an increased risk of cardiovascular complications. Clinical studies have suggested that Tesamorelin presentation in lipodystrophic test subjects might lead to a reduction in visceral adipose tissue (VAT) and improvements in insulin sensitivity and lipid profiles. Tesamorelin appears to act through the activation of the growth hormone-releasing hormone receptor (GHRHR), potentially stimulating endogenous growth hormone secretion and promoting lipolysis; and potentially preserving “abdominal subcutaneous adipose tissue, improving body image and lipids”.(8)
Similarly, Ipamorelin has been reported to exhibit some promise in influencing adipose tissue metabolism. By combining Tesamorelin and Ipamorelin, it is hypothesized by researchers that the synergistic potential of these peptides may enhance the reduction of VAT and improve metabolic parameters in lipodystrophy test models.(8)
Tesamorelin & Ipamorelin Blend and Type 2 Diabetes
Preclinical and clinical studies have suggested that both Tesamorelin and Ipamorelin hold promise in improving glycemic control and mitigating the metabolic abnormalities associated with T2DM. Tesamorelin appears to stimulate endogenous growth hormone secretion, which has been long considered by scientists to enhance insulin sensitivity and glucose utilization. Ipamorelin studies also indicate that the peptide may influence glucose metabolism and insulin sensitivity. Combining Tesamorelin and Ipamorelin may provide complementary effects, which could also include reductions in hemoglobin A1c (HbA1c) levels, possible improvements in insulin sensitivity, and possible reductions in visceral adiposity in individuals with Type II Diabetes Mellitus.(9)
Tesamorelin & Ipamorelin and Cognitive Improvement
Studies have indicated that growth hormone and its secretagogues, such as Tesamorelin and Ipamorelin, might play a role in neuroplasticity, neuronal survival, and synaptic plasticity, all of which are considered critical for optimal cognitive performance.
Preclinical research has further suggested that Tesamorelin introduction may improve memory and learning abilities, possibly through its proposed impact on neurogenesis and synaptic plasticity. Furthermore, Ipamorelin has been suggested to enhance spatial memory and cognitive function in animal models. The combined influence of Tesamorelin and Ipamorelin may potentially amplify these cognitive benefits through their complementary mechanisms of action. By stimulating the growth hormone axis and modulating neurotrophic factors, this blend holds promise in promoting cognitive improvement.
Tesamorelin & Ipamorelin blend is available for research and laboratory purposes only. Please review and adhere to our Terms and Conditions before ordering.
References:
- Adrian S, Scherzinger A, Sanyal A, Lake JE, Falutz J, Dubé MP, Stanley T, Grinspoon S, Mamputu JC, Marsolais C, Brown TT, Erlandson KM. The Growth Hormone Releasing Hormone Analogue, Tesamorelin, Decreases Muscle Fat and Increases Muscle Area in Adults with HIV. J Frailty Aging. 2019;8(3):154-159. doi: 10.14283/jfa.2018.45. PMID: 31237318; PMCID: PMC6766405. https://pubmed.ncbi.nlm.nih.gov/31237318/
- Clemmons DR, Miller S, Mamputu JC. Safety and metabolic effects of tesamorelin, a growth hormone-releasing factor analogue, in patients with type 2 diabetes: A randomized, placebo-controlled trial. PLoS One. 2017 Jun 15;12(6):e0179538. doi: 10.1371/journal.pone.0179538. PMID: 28617838; PMCID: PMC5472315. https://pubmed.ncbi.nlm.nih.gov/28617838/
- National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 16137828, Tesamorelin. https://pubchem.ncbi.nlm.nih.gov/compound/Tesamorelin
- National Center for Biotechnology Information (2023). PubChem Compound Summary for CID 9831659, Ipamorelin. https://pubchem.ncbi.nlm.nih.gov/compound/Ipamorelin
- Rogério G. Gondo et al, Growth Hormone-Releasing Peptide-2 Stimulates GH Secretion in GH-Deficient Patients with Mutated GH-Releasing Hormone Receptor, The Journal of Clinical Endocrinology & Metabolism, Volume 86, Issue 7, 1 July 2001, Pages 3279–3283, https://doi.org/10.1210/jcem.86.7.7694
- Adrian S, Scherzinger A, Sanyal A, Lake JE, Falutz J, Dubé MP, Stanley T, Grinspoon S, Mamputu JC, Marsolais C, Brown TT, Erlandson KM. The Growth Hormone Releasing Hormone Analogue, Tesamorelin, Decreases Muscle Fat and Increases Muscle Area in Adults with HIV. J Frailty Aging. 2019;8(3):154-159. doi: 10.14283/jfa.2018.45. PMID: 31237318; PMCID: PMC6766405. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766405/
- Raun K, Hansen BS, Johansen NL, Thøgersen H, Madsen K, Ankersen M, Andersen PH. Ipamorelin, the first selective growth hormone secretagogue. Eur J Endocrinol. 1998 Nov;139(5):552-61. doi: 10.1530/eje.0.1390552. PMID: 9849822. https://pubmed.ncbi.nlm.nih.gov/9849822/
- Falutz J, Mamputu JC, Potvin D, Moyle G, Soulban G, Loughrey H, Marsolais C, Turner R, Grinspoon S. Effects of tesamorelin (TH9507), a growth hormone-releasing factor analog, in human immunodeficiency virus-infected patients with excess abdominal fat: a pooled analysis of two multicenter, double-blind placebo-controlled phase 3 trials with safety extension data. J Clin Endocrinol Metab. 2010 Sep;95(9):4291-304. doi: 10.1210/jc.2010-0490. Epub 2010 Jun 16. PMID: 20554713. https://pubmed.ncbi.nlm.nih.gov/20554713
- Clemmons DR, Miller S, Mamputu JC. Safety and metabolic effects of tesamorelin, a growth hormone-releasing factor analogue, in patients with type 2 diabetes: A randomized, placebo-controlled trial. PLoS One. 2017 Jun 15;12(6):e0179538. doi: 10.1371/journal.pone.0179538. PMID: 28617838; PMCID: PMC5472315. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472315/
NOTE: These products are intended for laboratory research use only. Tesamorelin & Ipamorelin blend for sale (8mg) is not intended for personal use. Please review and adhere to our Terms and Conditions before ordering.
Dr. Marinov (MD, Ph.D.) is a researcher and chief assistant professor in Preventative Medicine & Public Health. Prior to his professorship, Dr. Marinov practiced preventative, evidence-based medicine with an emphasis on Nutrition and Dietetics. He is widely published in international peer-reviewed scientific journals and specializes in peptide therapy research.